

بررسی آسایش دمایی در کلاس‌های درس مدارس ابتدایی استان قم

محسن مهدی نیا^۱، مهدی اسدی قاله‌ری^{۱*}، سیامک محبی^۲، رجبعلی حکم آبادی^۳

۱. مرکز تحقیقات آلانددهای محیطی، دانشگاه علوم پزشکی قم، قم، ایران
۲. دانشکده بهداشت، دانشگاه علوم پزشکی قم، قم، ایران
۳. دانشکده بهداشت، دانشگاه علوم پزشکی خراسان شمالی، بجنورد، ایران

نشریه پایش

تاریخ پذیرش مقاله: ۹۳/۷/۱۵

سال چهاردهم شماره ششم، آذر - دی ۱۳۹۴ صص ۷۲۱-۷۲۷

[نشر الکترونیک پیش از انتشار- ۱۸ آبان ۹۴]

چکیده

آسایش دمایی ناشی از اثر دما، رطوبت و جریان هوا بوده و عاملی بسیار مهم در حفظ سلامتی و بهینه‌سازی عملکرد دانش‌آموزان در کلاس است. با توجه به شرایط اقلیمی استان قم و اهمیت آسایش دمایی در مدارس، این مطالعه با هدف ارزیابی شرایط جوی کلاس‌های مدارس ابتدایی با استفاده از شاخص عدم آسایش (Discomfort Index DI)، انجام شد. مطالعه حاضر به صورت توصیفی- مقطعی در سال ۱۳۹۲ در ۱۱۵ کلاس مدرسه ابتدایی در استان قم انجام شد. رطوبت نسبی با استفاده از رطوبت سنج Casella و دمای هوا با استفاده از دماسنج جیوهای در پنج نقطه از هر کلاس در ارتفاع یکمتری از سطح زمین اندازه‌گیری شد. اندازه‌گیری‌ها بین ساعت ۹ تا ۱۵ در فصل بهار انجام و شاخص عدم آسایش دمایی برای هر کلاس محاسبه شد. نتایج نشان داد میانگین (انحراف معیار) دما برابر با $2/84$ در درجه سانتیگراد، میانگین (انحراف معیار) رطوبت نسبی $7/43$ درصد و میانگین DI $1/72$ بود. DI در $22/46$ درجه $27/42$ در درصد کلاس‌ها کمتر از 21 ، در 60 درصد کلاس‌ها در محدوده 21 تا 24 و در $22/6$ درصد کلاس‌ها در محدوده 24 تا 27 درجه سانتیگراد بود. بر اساس نتایج تنها در $17/4$ درصد از کلاس‌ها شرایط آسایش دمایی برای تمامی دانش‌آموزان مطلوب می‌باشد. بر اساس راهنمای ارائه شده در شاخص DI در شرایط موجود انتظار می‌رود در 60 درصد کلاس‌ها کمتر از 50 درصد و در $22/6$ درصد کلاس‌ها بیش از 50 درصد دانش‌آموزان احساس عدم آسایش دمایی داشته باشند. نتیجه‌گیری: در مدارس و محیط‌های آموزشی به خصوص در مناطق گرمسیری مانند استان قم، برای افزایش سطح آسایش دمایی که ارتباط مستقیم با کیفیت عملکرد فرآگیران دارد، انجام اصلاحات مناسب، ضروری است.

کلیدواژه: مدرسه ابتدایی، دما، رطوبت نسبی، شاخص عدم آسایش دمایی

* نویسنده پاسخگو: دانشگاه علوم پزشکی قم، قم ایران

تلفن: ۰۲۵۳۷۷۴۵۲۶۵

E-mail: hes.laboratory@yahoo.com

مقدمه

ایجاد محیط بهداشتی و سالم در مدارس، اثر بسیار مهمی بر تامین سلامت دانش آموزان دارد^[۱-۲]. مراکز آموزشی مانند یک کارخانه هستند که در آن افراد نه تنها دارایی فعالیت بدنی بلکه در گیر فعالیتهای شدید ذهنی و فکری هستند^[۳] و فرآگیران و آموزش دهنده‌گان مدت طولانی برای انجام فعالیت در آن حضور دارند. بنابراین شرایط محیطی یکی از مهمترین عوامل مؤثر در کیفیت فرآگیری و آموزش است. مطالعات نشان داده است که موقیت دانش آموزان در محیط‌هایی که احساس راحتی می‌کنند بیشتر است. علاوه بر این مطلوبیت شرایط محیط آموزشی به طور معنی‌دار با میزان مشارکت دانش آموزان در فعالیتهای آموزشی و همچنین با سطح تحمل معلمان ارتباط دارد^[۴]. دما و رطوبت نسبی هوا از عوامل فیزیکی محیط هستند که کاهش یا افزایش آنها در درجه اول و به طور مستقیم بر روی احساس راحتی افراد اثر دارد^[۵]. اثرات مستقیم رطوبت کمتر از ۲۰ درصد، عوارضی مانند تحریک چشم‌ها و سطح رطوبت متوسط تا بالا باعث اختلال تنفسی از نوع تنگی نفس و کاهش تبادل اکسیژن می‌گردد^[۶]. سطح رطوبت نسبی هوا در داخل ساختمان‌ها نه تنها به طور مستقیم بر روی احساس راحتی و سلامتی افراد اثر دارد بلکه بر روی رشد میکرووارگانیسم‌ها (میکروب‌ها، ویروس‌ها، قارچ‌ها و ...) و سرعت واکنش‌های شیمیایی که باعث آزاد سازی مواد شیمیایی بیماری‌زا (مثل ازن و فرمالدئید) از سطوح و تجهیزات می‌شود، اثر دارد^[۷]. مستندات نشان می‌دهد که در اثر سیستم تهویه ناکافی و شرایط دمایی نامناسبدر کلاس باعث اختلال در یادگیری و افزایش غیبت دانش آموزان می‌شود^[۵]. چندین مطالعه همه گیر شناسی که به بررسی ارتباط بین تعداد عفونت‌های تنفسی و غیبت در محیط‌های اداری و مدرسه پرداخته‌اند، نتایج نشان داد که وقوع عفونت‌های تنفسی و غیبت در بین افرادی که در محیط‌های با سطح رطوبت متوسط هستند کمتر از افرادی است که در محیط‌هایی با رطوبت پایین یا بالاتر از سطح متوسط باشند^[۶]. همچنین اثبات شده است که دما و رطوبت از جمله عواملی هستند که بر روی بروز سندروم ساختمان بیمار در محیط‌های اداری اثرگذار هستند^[۸]. مطالعات نشان داده اند که ارتباط قوی بین دما و رطوبت و درک افراد از کیفیت هوا وجود دارد و در واقع با افزایش سطح رطوبت و دمای هوای داخل ساختمان یا در واقع افزایش آنتالپی هوا، احساس آسایش دمایی و مقبولیت هوا کاهش می‌یابد^[۹-۱۰]. آسایش دمایی احساس ذهنی است که فرد از شرایط دمایی محیط اطراف خود احساس

رضایت می‌کند. بر اساس تعریف ASHRAE منطقه آسایش دمایی محدوده دمایی است که در آن ۸۰ درصد از افراد بی حرکت یا داری فعالیت سبک، شرایط دمایی محیط را قابل قبول بدانند. این شرایط زمانی ایجاد می‌شود که طبق معادله دمایی بدن، میزان ذخیره گرما در بدن برابر صفر باشد^[۱۱]. آسایش دمایی ناشی از اثرات دما، رطوبت و جریان هوا و تعیین کننده کیفیت و کمیت عملکرد فرد است. در هوای ساکن، بهترین آسایش دمایی در رنج دمایی ۲۲ تا ۲۸ درجه سانتی‌گراد و رطوبت نسبی ۳۰ تا ۵۰ درصد ایجاد می‌شود^[۱۲]. برای آسایش دمایی در محیط‌های مانند مدرسه سطح رطوبت مناسب جهت احساس رفاه بین ۳۰ تا ۵۰ درصد و دما ۱۸ تا ۲۴ درجه سانتی‌گراد توصیه می‌شود^[۱۲]. برای ارزیابی شرایط جوی در محیط‌های مختلف، بر اساس پارامترهای مانند دمای خشک گویسان، رطوبت، حرکت هوا، تابش، نوع پوشش، نرخ متابولیسم و غیره، شاخص‌های مختلفی ارائه شده است^[۱۳]. این شاخص‌ها به سه گروه تقسیم می‌شوند. گروه اول شاخص‌های تحلیلی هستند که بر اساس محاسبات معادله دمایی بدن طراحی شده‌اند و چون بر اساس پیشترین پارامترهای محیطی و فردی تدوین شده‌اند، جامع‌ترین شاخص‌ها هستند. گروه دوم شاخص‌های تجربی هستند که اساس استرین‌های عینی و ذهنی طراحی شده‌اند و گروه سوم شاخص‌های مستقیم هستند که مبتنی بر اندازه‌گیری مستقیم متغیرهای محیطی می‌باشند. کاربرد دو گروه اول در محیط‌های کار سخت است چون شامل متغیرهای زیادی بوده و به اندازه‌گیری‌های گستردۀ نیاز دارند. اما گروه سوم به دلیل اینکه بر اساس اندازه‌گیری پارامترهای محیطی هستند، شاخص‌های کاربردی تری هستند^[۱۱]. شاخص عدم آسایش دمایی (Discomfort Index DI)، در سال ۱۹۵۷ توسط Thom ارائه شد^[۱۴] و معروف‌ترین شاخص مستقیم ارزیابی آسایش دمایی هست که بر اساس دمای هوا و رطوبت نسبی پایه‌گذاری شده است^[۱۵] و اثر همزمان دمای خشک و دمای تر را بر روی آسایش دمایی افراد مشخص می‌کند. این شاخص در منابع مختلف به عنوان یک شاخص استرس گرمایی جامع و فرآگیر بیان شده است^[۱۱، ۱۸]. از محدودیتهای این شاخص این است که برخی پارامترهای جوی مانند گزمانی تاشی و سرعت باد و همچنین فیزیولوژی فرد را در نظر نمی‌گیرد^[۱۹]. شاخص DI ارائه شده توسط Thom، در حالی که احد اندازه‌گیری دما درجه سانتی‌گراد باشد از رابطه زیر به راحتی قابل محاسبه خواهد بود و نتایج حاصل براساس جدول ۱ قابل تفسیر است^[۱۵].

قم(۳۵۲ باب مدرسه) بود. انتخاب نمونه از این جامعه بر اساس روش خوشای چند مرحله‌ای بود. بدین طریق که پس از مشخص نمودن نواحی آموزش و پرورش و مدارس تحت پوشش (۳۵۲ باب مدرسه ابتدایی)، تعدادی از مدارس (خوشه‌ها) را به صورت تصادفی ساده انتخاب (۲۳ باب مدرسه) و از مدارس انتخاب شده، جمیعاً ۱۱۵ کلاس به صورت تصادفی انتخاب و از لحاظ هدف مورد نظر، بررسی گردیدند برای اندازه‌گیری رطوبت نسبی هوا، در هر کلاس پنج نقطه در نظر گرفته شد و رطوبت نسبی در هر پنج نقطه با استفاده از رطوبت سنج چرخان Casella اندازه‌گیری و از مقادیر به دست آمده میانگین گرفته شد و به عنوان میانگین رطوبت نسبی در کلاس ثبت گردید. دمای هوا نیز با استفاده از دما‌سنج جیوه‌ای معمولی در همان پنج نقطه اندازه‌گیری و از نتایج میانگین گرفته شد و به عنوان میانگین دمای هوا در کلاس ثبت گردید. برای دقت و صحت ابزارهای مورد استفاده با بررسی گواهی کالیبراسیون تجهیزات از کالیبره بودن آنها اطمینان حاصل شد و همچنین در بررسی اولیه نتایج حاصل از آنها با دستگاههای مشابه مقایسه گردید. شایان ذکر است برای انتخاب نقاط اندازه‌گیری، سطح کلاس به صورت شبکه‌ای به چهار قسمت مساوی تقسیم و اندازه‌گیری در مرکز هر ناحیه و یک اندازه‌گیری هم در مرکز کلاس انجام شد. تمامی اندازه‌گیری‌های دما و رطوبت در ارتفاع حدود یکمتری از سطح زمین، در فاصله زمانی بین ساعت ۹ تا ۱۵ در فصل بهار انجام شده است. با توجه با اینکه در این مطالعه آسایش گرمایی مد نظر بود، با بررسی انجام شده این بازه گرم روز که دانش‌آموزان در کلاس حضور دارند و فعالیت آموزشی در جریان است، انجام شود. بعد از اندازه‌گیری دو پارامتر دما و رطوبت نسبی، برای هر کلای شاخص عدم آسایش دمایی با استفاده از معادله ۱ محسوبه گردید و نتایج با توجه به جدول ۱ مورد ارزیابی قرار گرفت. در نهایت اطلاعات با استفاده از نرم افزار SPSS (نسخه ۱۶) آماری توصیفی شامل میانگین، میانه و انحراف معیار و از آزمون تحلیلی T-Test مورد تجزیه و تحلیل قرار گرفت.

یافته‌ها

در مطالعه حاضر هدف بررسی آسایش دمایی به عنوان یک عامل موثر بر سلامتی و راحتی دانش‌آموزان در کلاس‌های مدارس ابتدایی استان قم بود. از مجموع ۱۱۵ کلاس درس مورد بررسی در ۲۳ مدرسه، ۸۲/۶ درصد در مدارس دولتی و ۱۷/۴ درصد در مدارس غیر دولتی بودند.

معادله ۱

$$DI = T - (0.55 - 0.0055RH)(T - 14.5)$$

T: دمای هوا (درجه سانتی گراد)

RH: رطوبت نسبی (درصد)

از آنجا که در بین عناصر آب و هوایی، دما و رطوبت نسبی تأثیر بیشتری بر آسایش انسان دارند، بیشتر الگوهای آسایش بر این دو عنصر استوار هستند [۲۰]. مزایای ذکر شده برای شاخص‌های مستقیم، در مورد شاخص DI نیز صدق می‌کند و این شاخص در مطالعات متعددی برای ارزیابی آسایش دمایی مورد استفاده قرار گرفته است [۱۹، ۱۵]. برای مثال می‌توان به مطالعه Md Din اشاره کرد که در مطالعه خود آسایش دمایی را به دو طریق پرسشنامه و استفاده از شاخص DI مورد ارزیابی قرار داد و به این نتیجه رسید که ارتباط قوی بین نتایج حاصل از پرسشنامه و شاخص DI وجود دارد [۲۱]. تاکنون تحقیقات محدودی بر روی بررسی آسایش دمایی در کلاس‌های درس، انجام شده است [۴]. بسیاری از مطالعات انجام شده در این زمینه نیز با استفاده از پرسشنامه یا سایر روش‌ها صورت گرفته است. در این مورد Zhang مطالعه‌ای را در ۲۵ کلاس درس و ۱۲۷۳ دانش‌آموز با استفاده از پرسشنامه و روش (Sensation Vote(TSV)) انجام داد. نتایج آن مطالعه نشان داد که بیشتر افراد از شرایط دمایی در ماههای گرم سال رضایت دارند در شرایطی که میانگین دمای هوا و رطوبت نسبی به ترتیب ۲۱ درجه سانتی گراد و ۷ درصد بوده و این دو پارامتر دارای تغییرات زیادی بود [۲۵]. مطابق آنچه ذکر شد توجه به شرایط دمایی و آسایش دمایی در کلاس‌های درس، عامل بسیار مهم در حفظ سلامتی و بهینه‌سازی عملکرد دانش‌آموزان در فراغیری مطالب است. بنابراین با توجه به اهمیت این موضوع در مدارس و به ویژه مدارس ابتدایی این مطالعه با هدف ارزیابی شرایط جوی کلاس‌های مدارس ابتدایی استان قم با استفاده از شاخص عدم آسایش، انجام شده است. استان قم در مرکز کشور، با مساحتی معادل ۱۴ هزار و ۶۳۱ کیلومتر مربع واقع شده است. این استان به علت مجاورت با بیابان، دوری از دریا، عرض جغرافیایی و اختلاف زیاد ارتفاع از سطح دریا، دارای اقلیمی خشک، کم رطوبت، بارش اندک و هوای گرم و داغ در فصول گرم سال است.

مواد و روش کار

این مطالعه توصیفی- مقطعی در سال ۱۳۹۲ انجام شد. جامعه مورد بررسی کلیه کلاس‌های درس در تمامی مدارس ابتدایی استان

جدول ۳: درصد فراوانی کلاس‌ها در هر محدوده از شاخص احساس عدم آسایش

مقدار شاخص DI	شوابط آسایش دمایی	تعداد کلاس‌ها	درصد فراوانی
DI<۲۱	هیچ کس احساس عدم آسایش ندارد.	۲۰	۱۷/۴
۲۱≤DI<۲۴	کمتر از ۵۰ درصد افراد احساس عدم آسایش دارند	۶۹	۶
۲۴≤DI<۲۷	بیشتر از ۵۰ درصد از افراد احساس عدم آسایش می‌کنند	۲۶	۲۲/۶
۲۷≤DI<۲۹	بیشتر از ۵۰ درصد احساس عدم آسایش می‌کنند	.	.
۲۹≤DI<۳۲	همه افراد احساس عدم آسایش می‌کنند	.	.
DI≥۳۲	وضعیت اورژانسی بهداشتی	.	.

بحث و نتیجه‌گیری

شاخص دمایی و اقلیمی راحت و سالم برای هر نوع محیطی ضروری است اما به طور ویژه مدارس از جمله ساختمان‌هایی هستند که کیفیت بالای شرایط جوی محیط ممکن است اثر بسیار زیادی بر تمرکز، دقت فراگیری و به طور کلی عملکرد دانش‌آموزان داشته باشد [۲۶]. از طرفی مطابق نتایج مطالعات انجام شده توسط Revalthy و همکاران در سال ۲۰۰۰ تا ۲۰۰۳، بین خصوصیات فیزیکی فضای مدارس و مشکلات رفتاری دانش‌آموزان نیز رابطه مستقیمی وجود دارد [۲۷]. در این مطالعه با بررسی متغیرهای دما و رطوبت نسبی، مشخص شد میانگین دما و رطوبت نسبی به ترتیب ۲۷/۴۲ درجه سانتی‌گراد و ۳۰/۴ درصد بود. بر اساس نتایج حاصله تنها در ۷ درصد از کلاس‌های درس مورد بررسی متغیرهای دما و رطوبت به طور همزمان از نظر استاندارد در شرایط مناسب یعنی رطوبت ۳۰ تا ۵۰ درصد و دمای ۱۸ تا ۲۴ درجه سانتی‌گراد است. بنابراین از نظر شرایط دما و رطوبت در کلاس‌های مورد بررسی، در بیشتر موارد شرایط مناسبی تأمین نشده است. در این زمینه علیایی نیز در مطالعه‌ای که سال ۱۳۹۰ در یک ساختمان اداری در شهر تهران انجام داد میزان رطوبت اندازه‌گیری شده در فصل تابستان در تمامی ایستگاه‌های اندازه‌گیری را در محدوده ۲۳ تا ۲۸/۴ درصد به دست آورد. همچنین همانطور که نتایج نشان داده است، مقدار دما و رطوبت نسبی در مدارس دولتی و غیر دولتی دارای اختلاف معنی دار است و در مدارس غیر دولتی تا حدودی میانگین مقادیر دما و رطوبت به دست آمده نسبت به مدارس دولتی به مقادیر استاندارد نزدیک‌تر است. اما بررسی نشان داد که میانگین این دو متغیر جوی در مدارس بخش مرکزی استان قم و مدارس واقع در بخش‌های تابعه اختلاف معنی‌دار ندارد. در مطالعه حاضر با محاسبه شاخص

۷۴/۹ درصد از کلاس‌های مورد بررسی مربوط به مدارس بخش مرکزی قم و ۲۶/۱ درصد مربوط به مدارس واقع در شهرستان‌های تابعه استان بود. نتایج اندازه‌گیری دو متغیر دما و رطوبت به نمونه‌های مورد بررسی در جدول ۲ آورده شده است. نتایج مربوط به متغیرهای مورد بررسی با توجه به نوع مدرسه (دولتی و غیر دولتی) نشان داد که میانگین (انحراف معیار) دما در مدارس دولتی $۲۷/۶۴\pm(۲/۹۶)$ درجه سانتی‌گراد و در مدارس غیر دولتی برابر با $(۱/۹۳)\pm(۳/۷)$ درجه سانتی‌گراد بود و مقایسه نتایج نشان داد که در دو نوع مدرسه اختلاف معنی‌داری بین میانگین دما وجود دارد ($P=0/۰۲۱$). همچنین میانگین (انحراف معیار) رطوبت نسبی در مدارس دولتی $۵/۶۸\pm(۰/۹)$ و در مدارس غیر دولتی $۳۶/۶\pm(۱/۰۹)$ بود و از نظر آماری اختلاف معنی‌داری بین میانگین (انحراف معیار) رطوبت نسبی در دو نوع مدرسه وجود داشت ($P=0/۰۰۸$). همچنین میانگین (انحراف معیار) شاخص آسایش حرارتی در مدارس دولتی برابر با $۱/۸۱\pm(۱/۸۱)$ و در مدارس غیر دولتی برابر با $۲۲/۲۱\pm(۱/۲۵)$ بود که از این نظر اختلاف معنی‌دار بین دو نوع مدرسه مشاهده نشد ($P=0/۳۷$). وفق نتایج این مطالعه این بود که مشخص شد میانگین (انحراف معیار) دمای هوا، رطوبت نسبی و شاخص عدم آسایش در کلاس‌های واقع در مدارس بخش مرکزی اختلاف معنی‌دار با میانگین (انحراف معیار) دما در کلاس‌های مدارس واقع در شهرستان‌های تابعه ندارد.

جدول ۱: شوابط عدم آسایش حرارتی با توجه به شاخص عدم آسایش

مقدار شاخص DI	شوابط آسایش دمایی
DI<۲۱	هیچ کس احساس عدم آسایش دمایی ندارد.
۲۱≤DI<۲۴	کمتر از ۵۰ درصد احساس عدم آسایش دارند
۲۴≤DI<۲۷	بیشتر از ۵۰ درصد از افراد احساس عدم آسایش می‌کنند
۲۷≤DI<۲۹	بیشتر افراد احساس عدم آسایش می‌کنند
۲۹≤DI<۳۲	همه افراد احساس عدم آسایش می‌کنند
DI≥۳۲	وضعیت اورژانسی بهداشتی

جدول ۲: نتایج اندازه‌گیری دما و رطوبت نسبی در نمونه‌های مورد

متغیر	میانگین	انحراف معیار	میانه	حداکثر	حداقل
دما درجه سانتی‌گراد	۲۰	۲/۸۴	۲۷/۵	۲۷/۴۲	۳۲
رطوبت نسبی درصد	۲۶	۷/۴۳	۳۱	۳۰/۴	۶۵
شاخص عدم آسایش	۱۷/۶۴	۱/۷۲	۲۲/۶۳	۲۲/۴۶	۲۵/۵۶

در مطالعه از وضعیت دمایی در کلاس ابراز عدم رضایت کردند.^[۴] آنچه که از نتایج این مطالعه و دیگر مطالعات بر می‌آید، این است که در مدارس و محیط‌های آموزشی به خصوص در اقلیم گرم و خشک، برای افزایش سطح آسایش دمایی که ارتباط مستقیم با کیفیت عملکرد فرآگیران دارد، انجام اصلاحات مناسب، ضروری است. بنابراین در درجه اول طراحی معماری در مدارس باید به گونه‌ای باشد که در ماههای گرم سال با کاهش درجه حرارت و در ماههای سرد سال با افزایش درجه حرارت این محیط‌ها به آستانه آسایش نزدیک شوند. توجه ویژه به این موضوع در طراحی و ساخت مدارس جدید بسیار اهمیت دارد؛ به طوری که جهت و نحوه فرآگیری ساختمان و طراحی نورگیرها و پنجره‌ها به شکلی انجام شود که در فصول گرم سال از تابش خورشید به داخل فضاهای جلوگیری کرده و از پتانسیل خنک‌کنندگی تهییه طبیعی استفاده شود. بکارگیری سیستم‌های تهییه‌ای مطبوع مرکزی و همچنین اصلاح شرایط مدارس موجود اقدامی دیگر در جهت استانداردسازی محیط‌های آموزشی و افزایش سطح سلامت و بازدهی فعالیت‌های آموزشی خواهد بود. از محدودیت‌های انجام این مطالعه می‌توان به عدم همکاری مسئولان مدارس اشاره کرد. همچنین با توجه به همزمانی جمع‌آوری اطلاعات با برگزاری کلاس‌ها، برای اندازه‌گیری پارامترها در محدوده زمانی تعریف شده در مطالعه، نیاز به مراجعت مکرر به محل و صرف هزینه و زمان بیشتری بود.

سهم نویسنده‌گان

محسن مهدی‌نیا: جمع‌آوری اطلاعات و نگارش و تنظیم متن اولیه
مهدی اسدی: جمع‌آوری اطلاعات ویرایش مقاله و تهیه چکیده انگلیسی

سیامک محبی: تنظیم روش اجرای مطالعه و اصلاح ساختار مقاله
رجبعلی حکم‌آبادی: بررسی متون و مطالعات مرتبط با این مطالعه

تشکر و قدردانی

این مقاله نتیجه طرح تحقیقاتی با کد ۳۰۷ مصوب ۹۱/۱۱/۲۳ معاونت تحقیقات و فناوری دانشگاه علوم پزشکی قم بود، لذا لازم است از معاونت تحقیقات و فناوری دانشگاه علوم پزشکی قم که حمایت مالی این پژوهش را بر عهده داشته و همچنین سازمان آموزش و پژوهش استان قم که امکان اجرای این پژوهش را فراهم نموده است، کمال تشکر و قدردانی به عمل آید.

عدم آسایش دمایی در فضای کلاس‌ها مشخص شد میانگین شاخص مذکور برابر با $22/46 \pm 1/72$ به دست آمد. با توجه به جدول ارائه شده برای ارزیابی شاخص DI مشخص است که به طور میانگین در تمامی نمونه‌های مورد بررسی شرایط دمایی به گونه‌ای است که انتظار می‌رود کمتر از ۵۰ درصد از دانش آموزان احساس عدم آسایش دمایی داشته باشند. به طور دقیق‌تر مطابق نتایج در ۶۰ درصد از کلاس‌های مورد بررسی شاخص DI در محدوده ۲۱ تا ۲۴ درجه سانتی‌گراد بوده و در نتیجه کمتر از ۵۰ درصد از دانش آموزان احساس عدم آسایش دمایی خواهد داشت اما در ۲۲/۶ درصد کلاس‌های مدارس شرایط کمی بدتر بوده و انتظار می‌رود بیش از ۵۰ درصد از دانش آموزان احساس عدم آسایش داشته باشند. در این مطالعه در هیچ یک از نمونه‌های مورد بررسی بیشتر یا مساوی ۲۷ درجه سانتی‌گراد نبوده و بنابراین در بدترین کلاس‌ها انتظار این است که کمی بیشتر از ۵۰ درصد از دانش آموزان مدارس ابتدایی استان قم در فصول گرم سال تحصیلی، احساس عدم آسایش دمایی داشته باشندشایان به ذکر است که مطابق نتایج این مطالعه تنها در ۱۷/۴ درصد از مدارس ابتدایی در فصول گرم سال تحصیلی، از نظر آسایش دمایی، شرایط نرمال فراهم است. در ایران به شکل بسیار محدود به مطالعه سلامت محیط مدارس از نظر شرایط جوی پرداخته شده است. طاوسی و همکاران در مطالعه‌ای که اقلیم و معماری مدارس اصفهان را مورد بررسی قرار داد، آسایش دمایی را با استفاده از شاخص فشار عصبی مورد ارزیابی قرار دادند و به این نتیجه رسیدند که در اصفهان در ماههای گرم سال و به ویژه در روز عدّت شرایط عدم آسایش فراهم است.^[۲۰] در مطالعات انجام شده در سایر کشورها نیز در بررسی‌های متعدد آسایش حرارتی دانش آموزان عدّت به صورت subjective و از طریق پرسشنامه مورد ارزیابی قرار گرفته است. نتایج یک از طریق پرسشنامه مورد ارزیابی قرار نیجريه انجام شده است، نشان داد شاخص DI در محیط‌های مورد بررسی در ماههای داغ و خشک (آوریل)، گرم و مرطوب (آگوست) و گرم و خشک (اکتبر) سال به ترتیب برابر $24/5$ ، $26/5$ و $28/5$ درجه سانتی‌گراد بود. در مطالعه مذکور این طور نتیجه گرفته شد که محل‌های مورد مطالعه به خصوص در فصول گرم و مرطوب سال و در بعد از ظهرها در شرایط عدم آسایش دمایی هشدار و شدید قرار دارند.^[۳] در مطالعه دیگری هم که در مالزی و با استفاده از پرسشنامه، آسایش حرارتی در ۶۰ نفر از دانش آموزان ۳ مدرسه مورد ارزیابی قرار گرفت، ۴۸/۳ درصد از دانش آموزان شرکت کننده

منابع

- Zazuoli M. Investigation of Environmental Indexes of District 1 Primary School in Sari, Iran. *Iranian Journal of Health and Environment* 2009;2:3
- Malakootian M, Akbari H, NekoeiMoghaddam M, Parizi A, Nekounam G. Investigation of Environmental Health Condition and Safetyof Schools in Kerman in 2007. *The Journal of Toloo-e-Behdasht* 2006;7:1-14
- Alhaji M, Ahmed A. Analysis of human heat stress status for academic learning environment in Kano University of Science and Technology, Wudil, Kano State, Nigeria. *Civil and Environmental Research*. 2013;3:1-7
- Puteh M, Ibrahim MH, Adnan M, Che'Ahmad CN, Noh NM. Thermal Comfort in Classroom: Constraints and Issues. *Procedia - Social and Behavioral Sciences* 2012;46:1834-8
- Bakó-Biró Z, Kochhar N, Clements-Croome D, Awbi H, Williams M, editors. Ventilation rates in schools and learning performance. Proceedings of CLIMA; 2007
- Arundel AV, Sterling EM, Biggin JH, Sterling TD. Indirect health effects of relative humidity in indoor environments. *Environmental Health Perspectives* 1986;65:351
- Sterling E, Arundel A, Sterling T. Criteria for human exposure to humidity in occupied buildings. *ASHRAE transactions* 1985;91:611-22
- Reinikainen LM, Jaakkola JJ. Effects of temperature and humidification in the office environment. *Archives of Environmental Health: An International Journal* 2001;56:365-8
- Fang L, Wyon D, Clausen G, Fanger PO. Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance. *Indoor air* 2004;14:74-81
- Fang L, Clausen G, Fanger PO. Impact of temperature and humidity on the perception of indoor air quality. *Indoor air*. 1998;8[2]:80-90.
- Epstein Y, Moran DS. Thermal comfort and the heat stress indices. *Industrial health* 2006;44:388-98
- Salvato JA, Nemerow NL, Agardy FJ. Environmental engineering: Wiley. com; 2003
- Tselepidaki I, Santamouris M, Moustris C, Poulopoulou G. Analysis of the summer discomfort index in Athens, Greece, for cooling purposes. *Energy and buildings* 1992;18:51-6
- Thom E. The discomfort index. *Weatherwise* 1957;12:57-60
- Mohan M, Gupta A, Bhati S. A Modified Approach to Analyze Thermal Comfort Classification. *Atmospheric and Climate Sciences* 2014;4:7-19
- Poupkou A, Nastos P, Melas D, Zerefos C. Climatology of discomfort index and air quality index in a large urban Mediterranean agglomeration. *Water, Air, & Soil Pollution* 2011;222:163-83
- Choropoulous K, Kamoutsis A, Matsoukis A, Manoli E. An artificial neural network model application for the estimation of thermal comfort conditions in mountainous regions, Greece. *Atmosfera* 2012;25:171-81
- Potchter O, Itzhak Ben-Shalom H. Urban warming and global warming: Combined effect on thermal discomfort in the desert city of Beer Sheva, Israel. *Journal of Arid Environments* 2013;98:113-22
- Tavousi T, Ataei H, Kazemi A. Climate and Architectural Plan of New Constructed Schools in Isfahan. *Geography And Development Iranian Journal* 2008;6:97-114
- Md Din MF, Lee YY, Ponraj M, Ossen DR, Iwao K, Chelliapan S. Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate. *Journal of thermal biology* 2014;41:6-15
- Giannaros T, Melas D, Daglis I, Keramitsoglou I. Development of an operational modeling system for urban heat islands: an application to Athens, Greece. *Natural Hazards and Earth System Science* 2014;14:347-58
- Polydoros A, Cartalis C. Assessing thermal risk in urban areas—an application for the urban agglomeration of Athens. *Advances in Building Energy Research* 2014[ahead-of-print]:1-10
- Stathopoulou MI, Cartalis C, Keramitsoglou I, Santamouris M, editors. Thermal remote sensing of Thom's discomfort index [DI]: comparison with in-situ measurements. *Remote Sensing*; 2005: International Society for Optics and Photonics
- Zhang G, Zheng C, Yang W, Zhang Q, Moschandreas DJ. Thermal comfort investigation of naturally ventilated classrooms in a subtropical region. *Indoor and Built Environment* 2007;16:148-58
- Corgnati SP, Filippi M, Viazzo S. Perception of the thermal environment in high school and university classrooms: Subjective preferences and thermal comfort. *Building and Environment* 2007;42:951-9
- Kumar R, O'Malley PM, Johnston LD. Association Between Physical Environment of Secondary Schools and Student Problem Behavior A National Study, 2000-2003. *Environment and Behavior*. 2008;40:455-86

ABSTRACT

Classroom thermal comfort in primary schools

Mohsen Mahdinia ¹, Mehdi Asadi Ghalhari ^{1*}, Siamak Mohebi ², Rajabali Hokmabadi ³

1. Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran

2. Faculty of Health, Qom University of Medical Sciences, Qom, Iran

3. faculty of health, North Khorasan University of Medical Sciences, Bojnurd, Iran

Payesh 2015; 6: 721-727

Accepted for publication: 7 October 2014

[EPub a head of print-9 November 2015]

Objective (s): Thermal comfort consists of three parameters: temperature, humidity and airflow. It is one of the important factors on maintaining health and optimizing the performance of students in the classrooms. According to the climatic conditions of Qom province and the importance of thermal comfort in schools, this study aimed to assess classroom thermal conditions in primary schools.

Methods: This cross-sectional study was conducted in primary schools in Qom province in 2013. Relative humidity was measured using a CASELLA hygrometer and temperature was measured using a mercury thermometer at five points in each classroom at one meter height from ground level. The measurements were performed between 9 AM to 15 PM in the spring. Thermal discomfort was measured using the thermal discomfort index (DI). All statistical analysis performed using SPSS software version 16.

Results: Overall 115 classrooms were assessed. In this study, mean temperature was equals to $27.42 \pm 2.84^\circ\text{C}$. The mean of relative humidity was $30.4 \pm 7/43\%$ and mean of the DI was $22.46 \pm 1.72^\circ\text{C}$. In 17.4% of classrooms the DI was less than 21°C , in 60% of classrooms was $21\text{-}24^\circ\text{C}$ and in 22.6% of classrooms was $24\text{-}27^\circ\text{C}$. As a result only in 17.4% of classrooms thermal comfort conditions was favorable for students.

Conclusion: In order to increase thermal comfort level in primary schools and educational environments, especially in tropical areas such as Qom province, appropriate actions are recommended.

Key Words: primary school, temperature, relative humidity, Thermal discomfort index

* Corresponding author: Qom University of Medical Sciences, Qom, Iran
Tel: 02537745265
E-mail: hes.laboratory@yahoo.com